Inferring gene networks from time series microarray data using dynamic Bayesian networks
نویسندگان
چکیده
Dynamic Bayesian networks (DBNs) are considered as a promising model for inferring gene networks from time series microarray data. DBNs have overtaken Bayesian networks (BNs) as DBNs can construct cyclic regulations using time delay information. In this paper, a general framework for DBN modelling is outlined. Both discrete and continuous DBN models are constructed systematically and criteria for learning network structures are introduced from a Bayesian statistical viewpoint. This paper reviews the applications of DBNs over the past years. Real data applications for Saccharomyces cerevisiae time series gene expression data are also shown.
منابع مشابه
Inferring Gene Regulatory Networks from Time-Series Expressions Using Random Forests Ensemble
Reconstructing gene regulatory network (GRN) from timeseries expression data has become increasingly popular since time course data contain temporal information about gene regulation. A typical microarray gene expression data contain expressions of thousands of genes but the number of time samples is usually very small. Therefore, inferring a GRN from such a high-dimensional expression data pos...
متن کاملFirst Studies of the Influence of Single Gene Perturbations on the Inference of Genetic Networks
Inferring the network structure from time series data is a hard problem, especially if the time series is short and noisy. DNA microarray is a technology allowing to monitor the mRNA concentration of thousands of genes simultaneously that produces data of these characteristics. In this study we try to investigate the influence of the experimental design on the quality of the result. More precis...
متن کاملIntegrate qualitative biological knowledge for gene regulatory network reconstruction with dynamic Bayesian networks
Reconstructing gene regulatory networks, especially the dynamic gene networks that reveal the temporal program of gene expression from microarray expression data, is essential in systems biology. To overcome the challenges posed by the noisy and under-sampled microarray data, developing data fusion methods to integrate legacy biological knowledge for gene network reconstruction is a promising d...
متن کاملInferring gene regulatory networks from time series data using the minimum description length principle
MOTIVATION A central question in reverse engineering of genetic networks consists in determining the dependencies and regulating relationships among genes. This paper addresses the problem of inferring genetic regulatory networks from time-series gene-expression profiles. By adopting a probabilistic modeling framework compatible with the family of models represented by dynamic Bayesian networks...
متن کاملInferring Gene Regulatory Networks from Gene Expression Data by a Dynamic Bayesian Network-Based Model
Enabled by recent advances in bioinformatics, the inference of gene regulatory networks (GRNs) from gene expression data has garnered much interest from researchers. This is due to the need of researchers to understand the dynamic behavior and uncover the vast information lay hidden within the networks. In this regard, dynamic Bayesian network (DBN) is extensively used to infer GRNs due to its ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Briefings in bioinformatics
دوره 4 3 شماره
صفحات -
تاریخ انتشار 2003